Python API Reference ==================== .. automodule:: kmeans :members: :undoc-members: :show-inheritance: Functional API -------------- .. autofunction:: kmeans.kmeans Object-Oriented API ------------------- KMeans Class ~~~~~~~~~~~~ .. autoclass:: kmeans.KMeans :members: :undoc-members: :show-inheritance: :special-members: __init__ .. automethod:: __init__ .. automethod:: fit .. automethod:: predict .. automethod:: fit_predict Attributes ^^^^^^^^^^ After calling :meth:`fit`, the following attributes are available: .. py:attribute:: centroids_ :type: numpy.ndarray of shape (n_clusters, n_features) Coordinates of cluster centers. .. py:attribute:: labels_ :type: numpy.ndarray of shape (n_samples,) Labels of each point indicating cluster assignment. C Extension Module ------------------ .. note:: The ``_kmeans`` module is a low-level C extension. Most users should use the high-level Python API instead. .. py:module:: kmeans._kmeans .. py:function:: fit(data, k, max_iterations, tolerance) Low-level k-means fitting function. :param numpy.ndarray data: Input data array (n_samples, n_features) :param int k: Number of clusters :param int max_iterations: Maximum iterations :param float tolerance: Convergence tolerance :return: Tuple of (centroids, labels) :rtype: tuple[numpy.ndarray, numpy.ndarray] .. py:function:: predict(data, centroids) Predict cluster labels for data points. :param numpy.ndarray data: Input data array (n_samples, n_features) :param numpy.ndarray centroids: Cluster centroids (k, n_features) :return: Cluster labels :rtype: numpy.ndarray Examples -------- See :doc:`examples` for more usage examples.